Milestone Report: Straight Line Vectorization on PL/PGSQL
User-Defined Functions in a Compilation-Based In-Memory
Database

Prithvi Gudapati (pgudapat), Tanuj Nayak (tnayak)

https://prithg98.github.io/745Website/

1 Major Changes

We initially were planning on implementing an auto-vectorization pass inspired by Porpodas et al. [I]’s
work on super-node superword level parallelism. However, we are currently actually implementing an auto-
vectorization pass inspired by Larsen et al. [2]’s work on superword level parallelism. We intend to especially
focus on automatically vectorizing arithmetic operations in UDF code across columns of a given row.

2 What We Have Accomplished So Far
2.1 UDF Compiler

We have implemented the foundations for a compiler that converts from PL/PGSQL text programs to
bytecode for our domain specific language (TPL) and, consequentially, LLVM IR. For now it compiles all
non-SQL constructs such as if statements, loops, functions and parameters.

2.2 SLP LLVM Pass

We are working on the implementation of the SLP LLVM pass. As of Wednesday 10/15, we are able to
successfully gather and group the seed instructions, which are stores to continuous memory addresses. In
addition, we are able to trace the use-def chains for each argument being stored. Using this information,
we are also able to construct the vectorization trees. We have not yet implemented the scheduling and
placement of the vectorized instructions based on the vectorization trees.

3 Meeting Our Milestone

Because we have changed our implementation slightly, we are a little behind where we originally wanted to
be. As a result, we have not quite met our milestone. However, we are optimistic that we should still be
able to accomplish the 100% goals that we stated in the proposal.

4 Surprises

Implementing the UDF compiler to work with the domain specific language for the Terrier database has not
been as easy as we thought it would be. We had to augment features of the domain specific language here
and there in order to fit our needs. This difficulty is especially augmented by the fact that we are inserting
code into a large preexisting codebase.

Furthermore, implementing the auto-vectorization pass has been similarly challenging. However, we now
have a good understanding of what exactly we need to do and how to go about doing it. In addition, after
some initial issues, we have made decent progress on this front.


https://prithg98.github.io/745Website/

5 Revised Schedule

1. Week of 4/13:

(a) Tanuj: Get embedded static SQL calls to work inside queries.

(b) Prithvi: Implement the scheduling and insertion of vectorized instruction.

2. Week of 4/20:

(a) Tanuj and Prithvi:
(b) Tanuj and Prithvi:
(¢) Tanuj and Prithvi:

3. Week of 4/27:

(a) Tanuj and Prithvi:
(b) Tanuj and Prithvi:

Finish the SLP pass.
Run the SLP pass on the benchmarks.

Begin working on the report.

Finish working on the report.

Work on the poster.

6 Resources Needed

As mentioned in the proposal, we need a good machine with vectorization hardware capabilities to develop
and benchmark our passes on. At the moment, we have access to one such machine from the CMU DB

group.

References

[1] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luis F. W. Gdes, and Timothy Matt-
son. Super-node slp: Optimized vectorization for code sequences containing operators and their inverse
elements. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and

Optimization, CGO 2019, page 206-216. IEEE Press, 2019.

[2] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism with multimedia in-

struction sets. SIGPLAN Not., 35(5):145-156, May 2000.



	Major Changes
	What We Have Accomplished So Far
	UDF Compiler
	SLP LLVM Pass

	Meeting Our Milestone
	Surprises
	Revised Schedule
	Resources Needed

